Mars Drilling
and Planetary
Engineering
Research

Jim Blacic, Don Dreesen and Ted Mockler
Drilling Research Team, EES-11

1 Technology and subsurface exploration planning, roadmapping

System

Near-Surface Explorer (1-20 m)
Shallow Subsurface Explorer (200 m)

Deep Hydrosphere Explorer (4000 m)

Water Production (4000 m)

System Science Objectives

® characterize near-surface materials (cuttings samples—min/pet, geochem)
® geophysical sensing of subsurface (seismic array, GPR, gravity)

e characterization of shallow subsurface (core samples)
e expanded geophysical sensing (heat flow array)

e sample deep hydrosphere

e search for biosphere

e expanded core analysis

e expanded geophysical sensing

e validate geophysical models with samples

e produce water & other resources

Operational Objectives

e multiple sites, short-range rover
e return to base for sample analysis and recharge
e remote control & mobility demonstration

¢ point landing at one of surface sites
® demo partial autonomous drilling
® demonstrate core sample handling

¢ point landing at shallow site
® demonstrate autonomous deep sampling

e demonstrate production well completion & operation (5-cm-diam.)

¢ demonstrate resource handling/storage
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2 Drilling systems analysis

Shallow Sampling Conceptual
Systems Analysis

» Assumed mixed rock penetration required
¢ Basalt flows, well-cemented to non-consolidated
sediments, impact crater debris, ground ice/clath-
rates—hole stability conditions unknown but no
pressurized fluids expected

=» 0n-site analysis of samples, no return;
measurements while drilling

®» | eave instrumented hole

3 Drilling/sampling technology development
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Mars 2007 Subsurface
Sampling Concept

=» Conservative, flexible
approach capable of
penetrating a wide variety of
rock types and subsurface
conditions

» Preserves thermal and
compositional integrity of
samples

» Meets mission power and

Concept Features

» Hole stability provided
by drilled-in casing at all
depths

=» Comminution by
combined rotary-
micropercussion drilling

= Cuttings removal by
combined auger-
sonification

»Samples in the form of

» 36 possible systems identified
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